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Thus, combining Eqs. (4) and (5) by matrix multiplication,

N a previous paper,’ the author presented a “transfer S — a?(ED); cosanly — <l) Esinely, &
matrix’’? approach for a beam column under various end a
conditions. This paper extends the method of beam columns T inonl
to multi-support systems. For an element of a beam column M - ca(BD): sinuly 0 ¢
between 2; and 2:44, the relation between the output and the @ cosauly 0 Yy
input is expressed by the transfer matrix equation ol
— SIna;g ity
[yl = |Asa] |y ) Yy e a ! 0
where |y| represents the column matrix {SM ¢y}, and S, (6)
M, i,y: are the shear, moment, slope, and deflection at z;. Similarly, the relation between station 2L and 1R is
The transfer matrix is -
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Consider a beam column with multiple supports (Fig. 1). The relation between stations 0 and 1L is
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Matrix-multiplying Eq. (6) by Eq. (7), one has
For a free end, S and M are both zero; therefore, Eq. (3) S b b
11 12
reduces to
M be b
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From Marguerre,3 the relation between the right and left
sides of the spring support is : ] 0
_ 2 3
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Fig. 1 Beam column on multiple supports
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where
bn = — cosasle[a®(EI)y cosanly + (1/an)k sinanls] +
(8410 Sina1l1 SiIIOLQZQ(EI)l — COSCKlll [azz(EI)2 Cosaglg]
by = — (sinauly/ ae) [ (ED), cosaili] —

COSO{glg [Oll(EI)l Sinalll] -
cosauly [ae(EI)s sinaely] — (sinaals/ as) [k sinoyly/ e

b42 = k[(azlg - SinCIQZg)/ags(EI)z] + 1

At station 2, the deflections ¢z = y.r are both equal to

zero.
in terms of yo.

The matrix equation (8) reduces to

S bu - 611(642/1741)
M oo — Do1(bas/bus)

Yo

¢ bsz — bs{bae/bsr)

Y loL

Expand Eq. (8) for the ysz term and then express ¢

(9

From Fig. 1, the total shear at station 2is Ry + S,. In

matrix form, this becomes
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M Cay
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0

(10)
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For other than a trivial solution, the system in Eq. (13) has.
solutions different from zero if the determinant of the system
vanishes. Expanding Eq. (13), the buckling load (P) may
be determined when

dyidsy — dudyp — 0 (14)
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Free Vibration of a Damped
Semi-Elliptical Plate and a
Quarter-Elliptical Plate
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Nomenclature

rectangular coordinates, in.

major and minor axes of the elliptical plates, in.
deflection of the plate, in.

thickness of the plate, in.

Eh3/12(1 — »?) = flexural rigidity, lb-in.
Young’s modulus of elasticity

Poisson’s ratio

&
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In a similar manner, the transfer matrix between station 2R and 3 is

S

M

Y i3

COSOlglg - 3 sina3l3
sinosls
— COSOZglg
2%
1 - COSOL3Z3 Sina3l3
Oéaz(EI)a Ols(EI)s
0’313 —_ Sina3l3 1 - COS&3Z3
a33(EI)3 a32(EI)3

Multiplying matrix Eq. (10) by matrix Eq. (11), the fol-

lowing is obtained:

8 dn
M da
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Y s da

where

dis
ds Yo
ds R,
de

(12)

du = (11 COSO{sls — 21003 sina3l3 — Csl[aaz(EI)g COSOlslg]

d21

d42 = (O[;;la b sina3l3)/a33(EI)3

(011 Sinasla/ 013) + co1 cosazls — ca [az(EI )3 sinasls]

At station 3 for a fixed end ¢3 = y3 = 0; thus in matrix

form
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— 0[32(EI)3 COSO[;;Z;; 0 S

- C(a(EI)a sinagl3 0 M
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p = mass density of the material, lb-sec?in.~*
k = damping coefficient, lb-sec-in. ™1

¢ = {ime

w = natural frequency of the system, rad/sec
Subscripts

t,tt,n = derivatives with respect ton and{

N ordinary product solution and the Galerkin method
are used as outlined by Stanisic! and McNitt? to com-
pute the lowest natural frequency of the normal modes of
free vibration of a semi-elliptical and a quarter-elliptical plate,
both of which are clamped on their boundaries. The classical
small-deflection theory is assumed to be valid, and the influ-
ence of rotatory inertia is neglected.

Formulation and Solution of the Problem

Because of the shape of the boundaries of the plates con-
sidered, difficulties arise for integral transform techniques.
However, in the aerospace and ship industries, plates of
various shapes occur. For this reason the following approxi-
mate solution is given.
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